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In general, the power-law degree distribution has profound influence on various dynamical processes defined
on scale-free networks. In this paper, we will show that power-law degree distribution alone does not suffice to
characterize the behavior of trapping problems on scale-free networks, which is an integral major theme of
interest for random walks in the presence of an immobile perfect absorber. In order to achieve this goal, we
study random walks on a family of one-parameter �denoted by q� scale-free networks with identical degree
sequence for the full range of parameter q, in which a trap is located at a fixed site. We obtain analytically or
numerically the mean first-passage time �MFPT� for the trapping issue. In the limit of large network order
�number of nodes�, for the whole class of networks, the MFPT increases asymptotically as a power-law
function of network order with the exponent obviously different for different parameter q, which suggests that
power-law degree distribution itself is not sufficient to characterize the scaling behavior of MFPT for random
walks at least trapping problem, performed on scale-free networks.
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I. INTRODUCTION

As a fundamental stochastic process, random walks have
received considerable attention from the scientific society
since they found a wide range of distinct applications in
various theoretical and applied fields, such as physics, chem-
istry, biology, and computer science, among others �1–3�.
Among a plethora of interesting issues of random walks,
trapping is an integral major one, which plays an important
role in an increasing number of disciplines. The so-called
trapping issue that was first introduced in �4� is a random-
walk problem, where a trap is positioned at a fixed location,
absorbing all particles that visit it. The highly desirable quan-
tity closely related to the trapping issue is the first-passage
time �FPT� also called trapping time �TT�. The FPT for a
given site �node and vertex� is the time spent by a walker
starting from the site to hit the trap node for the first time.
This quantity is very important since it underlies many
physical processes �5,6�. The average of first-passage times
over all starting nodes is referred to as the mean first-passage
time �MFPT� or mean trapping time �MTT�, which is fre-
quently used to measure the efficiency of the trapping prob-
lem.

One of the most important questions in the research of
trapping is determining its efficiency, namely, showing the
dependence relation of MFPT on the size of the system

where the random walks are performed. Previous studies
have provided the answers to the corresponding problems in
some particular graphs with simple structure, such as regular
lattices �4�, Sierpinski fractals �7,8�, T-fractal �9�, and so
forth. However, recent empirical studies �10–12� uncovered
that many �perhaps most� real networks are scale-free char-
acterized by a power-law degree distribution P�k��k−� with
the exponent � belonging to interval �2,3�, which cannot be
described by above simple graphs �13�. Thus, it appears quite
natural and important to explore the trapping issue on scale-
free networks. In recent work �14–16�, we have shown that
scale-free property may substantially improve the efficiency
of the trapping problem: the MFPT behaves linearly or sub-
linearly with the order �number of nodes� of the scale-free
networks, which is in sharp contrast to the superlinear scal-
ing obtained for above-mentioned simple graphs �4,7–9�. It
was speculated that the high efficiency of trapping on scale-
free networks is attributed to their power-law property. Al-
though scale-free feature can strongly affect the various dy-
namics occurring on networks, it was shown that the power-
law degree distribution �even degree sequence� itself does
not suffice to characterize some dynamical processes on
scale-free networks, e.g., synchronization �17,18�, disease
spreading �19,20�, and the like. Thus far, it is still not known
whether degree sequence is sufficient to characterize the be-
havior of trapping problem on scale-free networks although
it has been shown that the exponent � of power-law degree
distribution does not suffice �14,15,21,22�.

In this paper, we study the trapping problem on a class of
scale-free networks with the same degree sequence, which
are dominated by a tunable parameter q �23�. We determine
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separately the explicit formulas of the mean first-passage
time for the two limiting cases of q=1 and q=0. We show
that in both cases the MFPT increases as a power-law func-
tion of the network order, with the exponent less than 1 for
q=1 and equal to 1 for q=0. We also study numerically the
MFPT for the case of 0�q�1, finding that it is also a
power-law function of network order with the exponent ��q�
depending on parameter q. We demonstrate that in the full
range of 0�q�1, ��q� is a decreasing function of q, which
belongs to the interval �ln 3 / ln 4 ,1�. Our findings indicate
that the power-law degree distribution by itself is not suffi-
cient to characterize the trapping process taking place on
scale-free networks.

II. SCALE-FREE NETWORKS WITH IDENTICAL
DEGREE SEQUENCE

The networks in question are built iteratively �23�, see
Fig. 1. We represent by Hn�n�0� the networks after n itera-
tions �the number of iterations is also called generation here-
after�. Then the networks are constructed as follows. For n
=0, the initial network H0 consists of two nodes connected to
each other by an edge �a link�. For n�1, Hn is obtained from
Hn−1. That is to say, to obtain Hn, one can replace each link
existing in Hn−1 either by a connected cluster of links in the
top right of Fig. 1 with probability q, or by the connected
cluster on the bottom right with complementary probability
1−q. Repeat the growth process n times, with the graphs
obtained in the limit n→�. In Figs. 2 and 3, we present the
growing processes of two special networks corresponding to
q=0 and q=1, respectively.

Let L�n� be the number of nodes created at generation n
and En be the total number of all edges present at generation
n. By construction, we have En=4En−1. Considering the ini-
tial condition E0=2, it leads to En=4n. Since each existing
edge at a given generation will create two new nodes at the
next generation, then, at each generation ni �ni�1� the num-
ber of newly introduced nodes is L�ni�=2Eni−1=2�4ni−1.
Thus, at generation n the network order is

Vn = �
ni=0

n

L�ni� =
2

3
�4n + 2� . �1�

Let ki�n� be the degree of a node i at generation n, which
was created at generation ni �ni�0�. Then,

ki�n� = 2n−ni+1. �2�

Note that the two nodes created at generation 0 have the
same degree as that of the nodes added at generation 1. From
Eq. �2�, it is obvious that after each new iteration the degree
of a node doubles, i.e.,

ki�n� = 2ki�n − 1� . �3�

The networks considered exhibit some interesting topo-
logical properties. Their nodes have same degree sequence
�thus the same degree distribution�, independent of the value
of parameter q. Concretely, the networks have a power-law
degree distribution P�k��k−� with the exponent �=3 �23�.
On the other hand, since there is no triangle in the whole
class of the networks, the clustering coefficient is zero. Al-
though the degree distribution and clustering coefficient do
not depend on parameter q, other structural characteristics
are closely related to q. For example, for q=1, the network is
reduced to the �1, 3�-flower introduced in �24�. In this case, it
is a small world, its average path length �APL�, defined as
the mean of shortest distances between all pairs of nodes,
grows logarithmically with the network order �23�; at the
same time, it is a nonfractal network �25,26�. While for q
=0, it corresponds to the �2, 2�-flower addressed in �24� that

FIG. 1. Iterative method of the network construction. Each edge
is replaced by either of the connected clusters on the right-hand side
of arrows with a certain probability, where black squares represent
new nodes.

FIG. 2. �Color online� Illustration of the first several iterations
of the network for a particular case q=1.

FIG. 3. Sketch of the iteration process of the network for the
limiting case of q=0.
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is exactly the hierarchical lattice proposed by Berker and
Ostlund �27� and has been extensively studied by many au-
thors �28–33�. For this case, the network is not small world
with the APL increasing as a square power of the network
order �30,31�; moreover, it is fractal with the fractal dimen-
sion dB=2 �31�. When q increases from 0 to 1, the networks
undergo a transition from fractal to nonfractal scalings and
exhibit a crossover from “large” to small worlds at the same
time �23�; these similar phenomena are also observed in a
family of treelike networks �34�.

The peculiar topological features make the networks
unique within the category of scale-free networks since these
particular structures strongly affect the dynamical processes
defined on the networks. For instance, different thresholds of
bond percolation were recently observed in the networks,
which implies that power-law degree distribution �even de-
gree sequence� alone does not suffice to characterize the per-
colation threshold on scale-free networks under bond perco-
lation �23,32�. In what follows, we will study random walks
with a single immobile trap on the networks. We will show
that the degree sequence and thus the degree distribution are
not sufficient to determine the scalings for MFPT of trapping
process occurring on the networks under consideration.

III. RANDOM WALKS WITH A FIXED TRAP

In this section, we study the so-called simple discrete-
time random walks of a particle on network Hn. At each time
step, the particle �walker� jumps from its current location to
one of its neighbors with equal probability. In particular, we
focus on the trapping problem, i.e., a special issue for ran-
dom walks with a trap positioned at a given node. To this
end, we first distinguish different nodes in Hn by labeling
them in the following way. The two nodes in H0 have labels
1 and 2. For each new generation, we only label the new
nodes created at this generation while we keep the labels of
all pre-existing nodes unchanged. In other words, we label
sequentially new nodes as M +1,M +2, . . . ,M +	M, where
M is the number of the old nodes and 	M is the number of
newly created nodes. In this way, every node is labeled by a
unique integer, at generation n all nodes are labeled from 1 to
Vn= 2

3 �4n+2�. Figures 4 and 5 show how the nodes are la-
beled for two special cases of q=1 and q=0.

We place the trap at node 1 denoted by iT. At each time
step, the particle, starting from any node except the trap iT,
moves uniformly to any of its nearest neighbors. It should be
mentioned that, due to the symmetry, the trap can be also
situated at nodes 2, 3, or 4, which has not any effect on
MFPT. The special selection we made for the trap allows to
address the issue conveniently. Particularly, this makes it
possible to analytically compute the MFPT for the two de-
terministic networks corresponding to q=1 and q=0 �details
will be discussed below� because of their special structures
and the convenience of identifying the trap iT since the first
generation.

As mentioned above, one of the most important quantity
characterizing such a trapping problem is the FPT defined as
the expected time a walker takes, starting from a source
node, to first reach the trap node. The significance first origi-

nates from the fact that the first encounter properties are
relevant to those in a plethora of real situations �35�, includ-
ing transport, disease spreading, target search, and so on. On
the other hand, many other quantities can be expressed in
terms of FPTs and more information about the dynamics of
random walks can be extracted from the analysis of FPTs
�36�. Finally, the average of first-passage times, i.e., MFPT,
measures the efficiency of the trapping process: the smaller
the MFPT, the higher the efficiency and vice versa. In the
following, we will determine the exact solutions to MFPT for
some limiting cases, as well as the dependence relation of
MFPT on the network order.

Let Ti
�n� be the FPT for a walker initially placed at node i

to first reach the trap iT in Hn. This quantity can be expressed
in terms of mean residence time �MRT� �16,37�, which is
defined to be the mean time that a random walker spends at
a given node prior to being absorbed by the trap. Actually,
the MRT is the mean number of visitations of a given node
by the walker before trapping occurs.

It is known that the trapping problem studied can be de-
scribed by a Markov chain �38�, whose fundamental matrix
is the inverse of matrix Bn that is a variant of the normalized
Laplacian matrix �39� Ln for Hn and can be obtained from Ln

FIG. 4. Labels of all nodes of H3 in the case of q=1.

FIG. 5. Labels of all nodes of H3 for the particular case of
q=0.
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with all entries in the first row and column �corresponding to
the trap node� setting to zeros. The entry �bn

−1�ij of the fun-
damental matrix �Bn�−1 expresses the mean number of visi-
tations of node j by the particle, starting from node i, before
it is eventually trapped. Thus, we have

Ti
�n� = �

j=2

Vn

�bn
−1�ij . �4�

Then, the mean first-passage time, �T�n, which is the average
of Ti

�n� over all initial nodes distributed uniformly over nodes
in Hn other than the trap, is given by

�T�n =
1

Vn − 1�
i=2

Vn

Ti
�n� =

1

Vn − 1�
i=2

Vn

�
j=2

Vn

�bn
−1�ij . �5�

Equation �5� shows that the problem of determining �T�n
is reduced to computing the sum of all elements of the fun-
damental matrix �Bn�−1. Although the expression of Eq. �5�
seems compact, the complexity of inverting Ln is O�Vn

3�.
Since the network order increases exponentially with n, Eq.
�5� becomes intractable for large n. Thus, restricted by time
and computer memory, one can obtain �T�n through direct
calculation from Eq. �5� only for the first iterations. It would
be satisfactory if good alternative computation methods
could be proposed to get around this problem. What is en-
couraging is that the particular construction of the networks
and the special choice of the trap location allow to calculate
analytically MFPT to obtain a closed-form formula, at least
for the two special cases of q=1 and q=0. The computation
details will be provided in the following text.

A. Case of q=1

We first establish the scaling relation governing the evo-
lution for Ti

�n� with generation n. In Table I, we list the nu-
merical values of Ti

�n� for some nodes up to n=6. From the
numerical values, we can observe that for a given node i, the
relation Ti

�n+1�=3Ti
�n� holds. That is to say, upon growth of the

network from generation n to generation n+1, the trapping
time to first arrive at the trap increases by a factor 3. This is
a basic characteristic of random walks on Hn when q=1,
which can be established from the arguments below �40–42�.

Consider an arbitrary node i in Hn of the q=1 case after n
generation evolution. From Eq. �3�, we know that upon
growth of the network to generation n+1, the degree, ki, of

node i doubles, namely, it increases from ki to 2ki. Among
these 2ki neighbors, one half are old neighbors, while the
other half are new nodes created at generation n+1, each of
which has two connections, attached to node i and another
simultaneously emerging new node. We now examine the
standard random walk in Hn+1: let X be the FPT for a particle
going from node i to any of its ki old neighbors; let Y be the
FPT for going from any of the ki new neighbors of i to one of
the ki old neighbors; and let Z represent the FPT for starting
from any of new neighbors �added to the network at genera-
tion n+1� of an old neighbor of i to this old neighbor. Then
we can establish the following backward equations:

	
X =

1

2
+

1

2
�1 + Y� ,

Y =
1

2
�1 + X� +

1

2
�1 + Z� ,

Z=
1

2
+

1

2
�1 + Y� .


 �6�

Equation �A2� has a solution X=3. Thus, upon the growth
of the network from generation n to generation n+1, the
first-passage time from any node i to any node j �both i and
j belong to Hn� increases by a factor of 3. That is to say,
Ti

�n+1�=3Ti
�n�, which will be useful for the derivation of the

exact formula for the MFPT below.
After obtaining the scaling of first-passage time for old

nodes, we now derive the analytical rigorous expression for
the MFPT �T�n. Before proceeding further, we first introduce
the notations that will be used in the rest of this section. Let

	n denote the set of nodes in Hn, and let 	̄n stand for the set
of those nodes entering the network at generation n. For the
convenience of computation, we define the following quan-
tities for 1�m�n:

Tm,tot
�n� = �

i�	m

Ti
�n� �7�

and

T̄m,tot
�n� = �

i�	̄m

Ti
�n�. �8�

By definition, it follows that 	n= 	̄n�	n−1. Thus, we
have

TABLE I. Numerical results of the trapping time Ti
�n� for a random walker starting from node i on the network Hn for various n in the

case of q=1. All the values are obtained through the direct calculation from Eq. �4�.

n \ i 2,3 4 5,6 7,8 9,10 11,12 13,14 15,16 17,18 19,20 21,22 23,24 25,26 27,28 29–32 33–36 37–40 41–44

1 3 4

2 9 12 5 8 12 13

3 27 36 15 24 36 39 7 12 20 23 27 28 11 20 32 35 39 40

4 81 108 45 72 108 117 21 36 60 69 81 84 33 60 96 105 117 120

5 243 324 135 216 324 351 63 108 180 207 243 252 99 180 288 315 351 360

6 729 972 405 648 972 1053 189 324 540 621 729 756 297 540 864 945 1053 1080
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Tn,tot
�n� = Tn−1,tot

�n� + T̄n,tot
�n� = 3Tn−1,tot

�n−1� + T̄n,tot
�n� , �9�

where the relation of Ti
�n+1�=3Ti

�n� has been made use of.

Hence, in order to determine T̄n,tot
�n� , we should first find the

quantity T̄n,tot
�n� that can be obtained as follows.

By construction, at a given generation, for each edge con-
necting two nodes u and v �see Fig. 6�, it will generate two
new nodes �say w1 and w2� in the next generation, and the
mean transmit times for the two new nodes obey the follow-
ing relations:

	T�w1� =
1

2
�1 + T�w2�� +

1

2
�1 + T�u�� ,

T�w2� =
1

2
�1 + T�w1�� +

1

2
�1 + T�v�� .
 �10�

In Eq. �10�, T�s� represents the expected time of a walker,
originating at node s to first get to the trap node. From Eq.
�10�, we have

T�w1� + T�w2� = 4 + T�u� + T�v� . �11�

Summing Eq. �11� over all the En old edges pre-existing at
the generation n, we obtain

T̄n+1,tot
�n+1� = 4En + �

i�	n

�ki�n� � Ti
�n��

= 4n+1 + 2T̄n,tot
�n+1� + 22T̄n−1,tot

�n+1� + ¯ + 2nT̄1,tot
�n+1� + 2nT̄0,tot

�n+1�.

�12�

For example, in H2 �see Fig. 4�, T̄2,tot
�2� can be expressed as

T̄2,tot
�2� = �T5

�2� + T6
�2�� + �T7

�2� + T8
�2�� + �T9

�2� + T10
�2�� + �T11

�2� + T12
�2��

= �4 + T1
�2� + T2

�2�� + �4 + T2
�2� + T3

�2�� + �4 + T3
�2� + T4

�2��

+ �4 + T4
�2� + T1

�2�� = 4E1 + 2�T1
�2� + T2

�2� + T3
�2� + T4

�2��

= 16 + 2T̄1,tot
�2� + 2T̄0,tot

�2� . �13�

Again, for instance, in H3 �see Fig. 4�, T̄3,tot
�3� can be written as

T̄3,tot
�3� = 64 + 2T̄2,tot

�3� + 4T̄1,tot
�3� + 4T̄0,tot

�3� . �14�

Now, we can determine T̄n,tot
�n� through a recurrence rela-

tion, which can be obtained easily. From Eq. �12�, it is not

difficult to write out T̄n+2,tot
�n+2� as

T̄n+2,tot
�n+2� = 4n+2 + 2T̄n+1,tot

�n+2� + 22T̄n,tot
�n+2� + ¯ + 2n+1T̄1,tot

�n+2�

+ 2n+1T̄0,tot
�n+2�. �15�

Equation �15� minus Eq. �12� times six and applying the
relation of Ti

�n+2�=3Ti
�n+1�, one gets the following recurrence

relation:

T̄n+2,tot
�n+2� = 12T̄n+1,tot

�n+1� − 2 � 4n+1. �16�

Using T̄1,tot
�1� =7, Eq. �16� is solved inductively

T̄n,tot
�n� = 4n−1 + 6 � 12n−1. �17�

Inserting Eq. �17� into Eq. �9� leads to

Tn,tot
�n� = 3Tn−1,tot

�n−1� + 4n−1 + 6 � 12n−1. �18�

Considering the initial condition T1,tot
�1� =10, Eq. �18� is re-

solved by induction to obtain

Tn,tot
�n� =

2

3
� 12n + 4n − 2 � 3n−1. �19�

Substituting Eq. �19� into Eq. �5�, we obtain the closed-form
expression for the MFPT for the trapping problem on Hn of
the q=1 case as follows:

�T�n =
1

Vn − 1
Tn,tot

�n� =
1

2 � 4n + 1
�2 � 12n + 3 � 4n − 2 � 3n� .

�20�

Below we will show how to express �T�n in terms of
network order Vn, with the aim of obtaining the relation be-
tween these two quantities. Recalling Eq. �1�, we have 4n

= 3
2Vn−2 and n=log4� 3

2Vn−2�. Thus, Eq. �20� can be rewrit-
ten as

�T�n =
Vn − 2

Vn − 1
�3

2
Vn − 2�ln 3/ln 4

+
3Vn − 4

2�Vn − 1�
. �21�

For large network, i.e., Vn→�,

�T�n � �Vn�ln 3/ln 4, �22�

with the exponent less than 1. Thus, in large network the
MFPT grows sublinearly with network order.

It should be mentioned that both the network correspond-
ing to q=1 addressed above and the network discussed in
�14� are the particular cases of the �1,y�-flower initially in-
troduced in �24�. Then, it is natural to expect that the ana-
lytical method for computing the MFPT used above can be
extended to applied to calculate the MFPT for trapping on
the �1,y�-flower. In the Appendix, we show the how to gen-
eralize the above technique to determine the MFPT for the
�1,y�-flower and show how the MFPT changes with network
order and parameter y.

B. Case of q=0

Analogous to the case of q=1, before deriving the general
formula for �T�n for the limiting case of q=0, we first estab-
lish the scaling relation dominating Ti

�n� evolving with gen-
eration n. To attain this goal, we examine the numerical val-
ues of Ti

�n� for some nodes up to n=6, which can be obtained
straightforwardly via Eq. �4�. From the numerical results
listed in Table II, one can easily observe that for a given node

u v

vu

w1 w2

FIG. 6. �Color online� Illustration showing the relation of the
mean transmit times for two new nodes and two old nodes con-
nected by an edge generating the new nodes.
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i, its MFPT changes with the generation as Ti
�n+1�=4Ti

�n�,
which can be supported by the following argument.

Consider a node i in the nth generation of network Hn for
a particular case of q=0. In the generation n+1, its degree ki
doubles by growing from ki to 2ki. Moreover, different from
that of the q=1 case, all the 2ki neighbors of node i are new
nodes created at generation n+1. We now examine the ran-
dom walks taking place in Hn+1: let X be the FPT originating
at node i to any of its ki old neighbors, i.e., those nodes
directly connected to i at iteration n; and let Y denote FPT
for going from any of the 2ki new neighbors of i to one of its
ki old neighbors. Then the following relations hold:

	X = 1 + Y ,

Y=
1

2
+

1

2
�1 + X� . 
 �23�

Equation �23� has a solution X=4 found by eliminating Y,
which means that for any pair of nodes i and j in Hn, the FPT
from i to j increases by a factor of four during the growth of
the network from generation n to generation n+1. The rela-
tion Ti

�n+1�=4Ti
�n� is a basic feature for random walks on the

network of the q=0 case, which will be applied to the deri-
vation of the exact formula for �T�n.

Having obtaining the evolution relation of trapping time
for old nodes when the network grows, we continue to derive
the analytical rigorous expression for the MFPT. In what
follows, we will use the same notations as those for the q
=1 case defined above. Similar to the q=1 case, it is easy to
get the following equation:

Tn,tot
�n� = Tn−1,tot

�n� + T̄n,tot
�n� = 4Tn−1,tot

�n−1� + T̄n,tot
�n� . �24�

Therefore, to determine Tn,tot
�n� , we need to find T̄n,tot

�n� first,
which can be obtained as follows. Notice that for any given
edge attaching two nodes u and v �see Fig. 7� in Hn, it will
generate two new nodes �w1 and w2� in Hn+1, and the FPTs
for the two new nodes are equal to each other obeying the
following equation:

T�w1� = T�w2� = 1 +
1

2
�T�u� + T�v�� , �25�

which yields to

T�w1� + T�w2� = 2 + T�u� + T�v� . �26�

Summing Eq. �26� over all En old edges belonging to Hn,
we have

T̄n+1,tot
�n+1� = 2En + �

i�	n

�ki�n� � Ti
�n��

= 2 � 4n + 2T̄n,tot
�n+1� + 22T̄n−1,tot

�n+1� + ¯ + 2nT̄1,tot
�n+1�

+ 2nT̄0,tot
�n+1�, �27�

from which we can derive the following recursive relation:

T̄n+2,tot
�n+2� = 16T̄n+1,tot

�n+1� − 2 � 4n+1. �28�

Using the initial condition T̄1,tot
�1� =6, Eq. �28� is solved induc-

tively to get

T̄n,tot
�n� =

4n

6
+

42n

3
. �29�

Plugging Eq. �29� into Eq. �24�, we have

Tn,tot
�n� = 4Tn−1,tot

�n−1� +
4n

6
+

42n

3
. �30�

Combining with the initial condition T1,tot
�1� =10, one can solve

Eq. �30� by induction to obtain

Tn,tot
�n� =

4n

18
�8 � 4n + 3n + 10� . �31�

Inserting Eq. �31� into Eq. �5�, we obtain the rigorous solu-
tion for the MFPT for the trapping issue performed on Hn of
the q=0 case:

TABLE II. The trapping time Ti
�n� for a random walker starting from node i on the network Hn for various

n in the case of q=0. All the values are calculated straightforwardly from Eq. �4�.

n \ i 2 3,4 5–8 9–12 13–20 21–28 29–36 37–44

1 4 3

2 16 12 7 15

3 64 48 28 60 15 39 55 63

4 256 192 112 240 60 156 220 252

5 1024 768 448 960 240 624 880 1008

6 4096 3072 1792 3840 960 2496 3520 4032

u v u v

w1

w2

FIG. 7. �Color online� Illustration showing the relation of the
first passage times for two new nodes and two old nodes connected
at last generation by an edge creating the new nodes.
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�T�n =
1

Vn − 1
Tn,tot

�n� =
4n

6�2 � 4n + 1�
�8 � 4n + 3n + 10� .

�32�

As in the case of q=1, we can recast �T�n as a function of the
network order:

�T�n =
3Vn − 4

36�Vn − 1�

12Vn +

3 ln�3

2
Vn − 2�

2 ln 2
− 6� , �33�

from which it is easy to see that for large network �i.e., Vn
→��, we have the following expression:

�T�n � Vn. �34�

Thus, the MFPT grows linearly with increasing order of net-
work, which is in sharp contrast to the sublinear scaling for
the q=1 case shown above.

In order to confirm the analytical expressions provided by
Eqs. �20� and �32�, we have compared the exact solutions for
the MFPT with numerical values given by Eq. �5� �see Fig.
8�. For all 1�n�6, the analytical values obtained from Eqs.
�20� and �32� show complete agreement with their corre-
sponding numerical results. This agreement is an indepen-
dent test of our theoretical formulas.

C. Case of 0�q�1

We have obtained the explicit expressions for MFPT of
random walks with a trap on the networks for two limiting
cases of q=1 and q=0 and shown that for the corresponding
cases the MFPT grows sublinearly or linearly with the net-
work order. But for the case of 0�q�1, there are some
difficulties in obtaining a closed formula for �T�n as for the
two special cases of q=1 and q=0, since for q=1 and q=0,
the networks are deterministic and self-similar, which allows
one derive the analytic solutions for �T�n; while for 0�q

�1, the networks are stochastic, which makes it impossible
to write a recursive relation for the evolution of the first-
passage time.

In order to obtain the dependence relation of MFPT with
the network order for 0�q�1, we have performed exten-
sive numerical simulations for various networks with differ-
ent iteration n �1�n�6� and q between 0 and 1. Figure 9
illustrates the variation in MFPT with network order Vn,
showing that for all 0�q�1, the MFPT grows as a power-
law function of Vn with the exponent ��q� changing with q:
When q increases from 0 to 1, the exponent ��q� decreases
from 1 to ln 3 / ln 4.

From Fig. 9 we also know that the efficiency of trapping
process is closely related to parameter q: the larger the pa-
rameter q, the higher of the efficiency of the trapping prob-
lem. To show this concretely, we performed numerical cal-
culation for network H6 with order 2732 for different q. For
each fraction q �0�q�1�, all results are obtained by apply-
ing Eq. �5� to an ensemble of 100 network realizations. In
Fig. 10, we plot the MFPT, �T�6, as a function of q. It is
easily observed that when q increases from 0 to 1, the MFPT
decreases monotonically with q.

The above described phenomenon that the leading behav-
ior of MFPT is a decreasing function of parameter q can be

T
n

FIG. 8. �Color online� Mean first-passage time �T�n as a function
of the iteration n on a semilogarithmic scale for two case of q=1
and q=0. The filled symbols are the numerical results obtained by
direct calculation from Eq. �5�, while the empty symbols corre-
spond to the exact values from Eqs. �20� and �32�. The analytical
and numerical values are consistent with each other.

T
n

FIG. 9. �Color online� Mean first-passage time �T�n versus the
network order Vn on a log-log scale for various n and q. The solid
lines serve as guides to the eye.

T
6

FIG. 10. Dependence relation of MFPT on parameter q.
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explained by the following heuristic arguments. For the case
of q=1, nodes �including the trap� with large degrees are
directly linked to one another. In addition, these large-degree
nodes are also connected to nodes with small degrees. In this
liming case, the network is a very compact system �23,24�.
Thus, a walker can easily visit large-degree nodes irrespec-
tive of its starting location. The interconnection within large-
degree nodes makes the walker spend a short time to hit the
trap. In contrast, for q=0, the network is fractal, the large-
degree nodes are completely repulsive and are exclusively
connected to small nodes with a degree of two �23,24,30,31�.
When a walker jumps in this network, it will generally first
arrive at some large-degree node far from the trap because of
the repulsion between the large-degree nodes, and prior to
being absorbed, the walker will spend much time in the in-
termediate region between its starting point and the trap
node. Hence, the trapping time is longer than the q=1 case.
In the case of 0�q�1, the network interpolates between the
case q=0 and q=1. When q increases from 0 to 1, the extent
of repulsion between large nodes becomes less, and thus the
APL lessens �23�. Therefore, the MFPT decreases as q in-
creases.

Moreover, since for the two liming cases of q=0 and q
=1, the MFPT �T�n behaves as a power-law function of net-
work order Vn, we thus expect that in the intermediate region
0�q�1, the MFPT also scales as �T�n��Vn���q� with ��q�
being a decreasing function of q as seen from Fig. 9. Al-
though it is difficult to know exactly how does ��q� drop
with q, Fig. 10 reveals that different q has an obviously
distinct effect on the MFPT. For example, when q is in the
vicinity of 0, a small increase in q makes the MFPT drop
rapidly, while the same change in q near 1 leads to less
effect. This phenomenon is analogous to that seen in the
Watts-Strogatz �SW� small-world network model �43�, where
the probability p for rewiring each edge plays a similar role
as the parameter q here.

IV. CONCLUSIONS

In summary, we have investigated the trapping issue on a
family of scale-free networks with identical degree sequence
thus the same degree distribution, which is controlled by a
parameter q�0�q�1�. We computed analytically or numeri-
cally the mean first-passage time �MFPT� for the trapping
problem on the networks for various q. The obtained results
show that for all q, the MFPT grows as a power-law function
of network order with the exponent ��q� dependent on q:
when the parameter q grows from 0 to 1, the exponent ��q�
decreases from 1 to ln 3 / ln 4, which indicates that power-
law degree distribution alone is not enough to characterize
the trapping problem performed on scale-free networks.
Therefore, when one makes general statements about the be-
havior of trapping issue on scale-free networks, care should
be needed.
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APPENDIX: DERIVATION OF MFPT FOR RANDOM
WALKS ON (1,y)-FLOWER

The �1,y�-flower �y�2� proposed in �24� are constructed
in an iterative way. For clarity, we also use Hn to represent
the �1,y�-flower. Initially �n=0�, H0 is an edge �a link� con-
necting two nodes. For n�1, Hn is obtained from Hn−1: for
each edge linking two nodes u and v in Hn−1, y−1 new nodes
are added. These y−1 nodes, together with u and v, form a
path of y links long, see Fig. 11. For the special cases of y
=2 and y=3, the �1,y�-flower is reduced to the two networks
studied in �14� and Sec. III A, respectively.

It is easy to see that after n iterations, the total number of
edges in the �1,y�-flower is En= �y+1�n. By construction, at
each iteration ni�ni�1�, L�ni�= �y−1�Eni

new nodes are cre-
ated. Thus, the number of all nodes in nth generation
�1,y�-flower is

Vn = �
ni=0

n

L�ni� =
y − 1

y
�y + 1�n +

y + 1

y
. �A1�

The �1,y� flower exhibits an obvious feature that the degree
of all existing nodes doubles at the next iteration. In network
Hn, there exist only nodes of degree k=2m�1�m�n�, and
the number of nodes having this degree is L�n−m+1�
+2
m,n.

The �1,y�-flower has an interesting topology observed in
various real networks �24�. First, it is scale free with a
power-law degree distribution P�k��k−� with the degree
exponent �=1+ln�1+y� / ln 2. Since y�2, �� �1
+ln 3 / ln 2 ,��. Second, the network Hn is small-world, its
diameter, defined as the maximum of the shortest distances
over all node pairs, is �y−1�n.

Having introducing the �1,y�-flower, next we study the
trapping issue on it with the immobile trap located at either
of the two nodes generated at iteration 0. In the case without
any confusion, below we will make use of the same notations
applied in the text. We first study the evolution of trapping

u v

vu

w1

w2 wy-2

wy-1

FIG. 11. �Color online� Construction method of the
�1,y�-flower: each edge connecting two nodes u and v generates
y−1 new nodes denoted by w1 ,w2 , . . . ,wy−1, respectively.
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time Ti
�n� of node i with generation n. For this purpose, we

give the following definition. At iteration n+1, for the y−1
new nodes �v1 ,v2 , . . . ,vy−1� created by an edge incident on
an old node i and one of its old neighbors �by construction,
these y+1 nodes constitute a path of y links long�. We call v1
a first-order new �direct� neighbor of i, v2 a second-order
new neighbor of i, v3 a third-order new neighbor of i, and so
on.

Consider a random walk in Hn+1: as shown above, when
the network grows from generation n to n+1, the degree, ki,
of node i doubles, increasing from ki to 2ki. Among these 2ki
neighbors, one half are the old neighbors and the other half
are the first-order new neighbors. Notice that the number of
its other different order new neighbors are also ki. Let X be
the FPT for a particle going from node i to any of its ki old
neighbors; let Yx �1�x�y−1� be the FPT for going from
any of the ki xth order new neighbors of i to one of its ki old
neighbors. These various FPTs follow the backward equa-
tions:

	
X =

1

2
+

1

2
�1 + Y1� ,

Y1 =
1

2
�1 + X� +

1

2
�1 + Y1� ,

Y2 =
1

2
�1 + Y1� +

1

2
�1 + Y3� ,

] ] ]

Yy−1 =
1

2
+

1

2
�1 + Yy−2� .


 �A2�

Elimination Y1 ,Y1 , . . . ,Yy−1 leads to X=y. Thus, we have the
relation Ti

�n+1�=yTi
�n�. That is, upon growth of the

�1,y�-flower from generation n to generation n+1, the FPT
between i and any one of the old nodes j �i.e., i�Hn and j
�Hn� increases by a factor y. This is a fundamental property
of random walks on the �1,y� flower and is very useful for
the following derivation.

We proceed to derive the analytical solution to the MFPT
�T�n. First, we compute Tn,tot

�n� that obeys the relation

Tn,tot
�n� = Tn−1,tot

�n� + T̄n,tot
�n� = yTn−1,tot

�n−1� + T̄n,tot
�n� . �A3�

Prior to finding Tn,tot
�n� , one must determine the T̄n,tot

�n� first. Ac-
cording to the construction rule �see Fig. 11�, for a given link
incident on two nodes u and v in Hn, it will lead to the
generation of y−1 new nodes �w1 ,w2 , . . . ,wy−1� at genera-
tion n+1. The FPTs for these y−1 new nodes satisfy equa-
tions:

	
T�w1�=

1

2
�1 + T�w2�� +

1

2
�1 + T�u�� ,

T�w2�=
1

2
�1 + T�w1�� +

1

2
�1 + T�w3�� ,

] ] ]

T�wy−1�=
1

2
�1 + T�wy−2�� +

1

2
�1 + T�v�� .


 �A4�

Equation �A4� yields

T�w1� + T�wy−1� = 2�y − 1� + T�u� + T�v� . �A5�

Analogously, we can obtain

T�w2� + T�wy−2� = 2�y − 3� + T�w1� + T�wy−1� , �A6�

T�w3� + T�wy−3� = 2�y − 5� + T�w2� + T�wy−2� , �A7�

and so forth. From these relations, we have

�
x=1

y−1

T�wx� =
y�y2 − 1�

6
+

y − 1

2
�T�u� + T�v�� . �A8�

Summing Eq. �A8� over all the En old edges pre-existing in
Hn yields

T̄n+1,tot
�n+1� =

y�y2 − 1�
6

En + �
i�	n

�ki�n� �
y − 1

2
Ti

�n��
=

y�y − 1��y + 1�n+1

6
+ �y − 1�T̄n,tot

�n+1� + 2�y − 1�T̄n−1,tot
�n+1�

+ ¯ + 2n−1�y − 1�T̄1,tot
�n+1� + 2n−1�y − 1�T̄0,tot

�n+1�. �A9�

In the same way, we have

T̄n+2,tot
�n+2� =

y�y − 1��y + 1�n+2

6
+ �y − 1�T̄n+1,tot

�n+2� + 2�y − 1�T̄n,tot
�n+2�

+ ¯ + 2n�y − 1�T̄1,tot
�n+2� + 2n�y − 1�T̄0,tot

�n+2�. �A10�

Equation �A10� minus Eq. �A9� times 2y and considering
Ti

�n+2�=yTi
�n+1�, we obtain the recursion relation

T̄n+2,tot
�n+2� = y�y + 1�T̄n+1,tot

�n+1� −
y�y − 1�2�y + 1�n+1

6
. �A11�

Using T̄1,tot
�1� = y�y−1��y+4�

6 allows to solve Eq. �A11� by induc-
tion

T̄n,tot
�n� =

y − 1

6�y + 1�
�y + 1�n�y + �y + 3�yn� . �A12�

Substituting Eq. �A12� for T̄n,tot
�n� into Eq. �A3�,

Tn,tot
�n� = yTn−1,tot

�n−1� +
y − 1

6�y + 1�
�y + 1�n�y + �y + 3�yn� .

�A13�

Using T1,tot
�1� = y�y+1��y+2�

6 , Eq. �A13� is resolved by induction to
obtain

Tn,tot
�n� =

�y + 3��y − 1�
6y

�y�y + 1��n +
y�y − 1�

6
�y + 1�n

−
y3 − 4y − 3

6
yn−1. �A14�

When y=3, Eq. �A14� reduces to Eq. �19� in the text.
From Eq. �A1�, we have �y+1�n= y

y−1Vn− y+1
y−1 and n

=logy+1� y
y−1Vn− y+1

y−1 �. Thus, Eq. �A14� can be rewritten in
terms of network order Vn
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Tn,tot
�n� = � y + 3

6
Vn −

�y + 3��y + 1�
6y

�� y

y − 1
Vn

−
y + 1

y − 1
�ln y/ln�y+1�

+
y�y − 1�

6
� y

y − 1
Vn −

y + 1

y − 1
�

−
y3 − 4y − 3

6y
� y

y − 1
Vn −

y + 1

y − 1
�ln y/ln�y+1�

. �A15�

Then, by definition, in the large limit of network order, the
MFPT �T�n is

�T�n =
Tn,tot

�n�

Vn − 1
� �Vn�ln y/ln�y+1� = �Vn���y�, �A16�

reproducing the result in Eq. �22� in the case of y=3.
Equation �A16� implies that, the leading behavior of

MFPT increases as a power-law function of network order. It
is not difficult to see that the exponent ��y�= ln y

ln�y+1� increases
with y: when y enhances from 2 to �, ��y� grows from
ln 2 / ln 3 to 1. Equation �A16� also shows that the transpor-
tation efficiency declines with parameter y: the larger the
parameter y, the less the efficiency. This is easily understood:
when y becomes larger, the network is more homogeneous.
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